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1 INTRODUCTION

The new methods of mining coal and the continuocus
demand for good quality coals for the local and export
market has left South Africa with increasing quantities
of discard and duff coal. These inferior coals, which
are currently stockpiled, are unsuitable for steam
raising in existing boilers.

In South Africa, over 25m tonnes of discard coal have
been accumulated over the years and this is increasing

at a rate of 7m tonnes per year. The accumulated duff
coal is in excess of 2m tonnes and is increasing at a
rate of 1,2m tonnes per year.

In order to utilize the inferior coals and reduce the
demand for better quality coals, the Department of
Mineral and Energy Affairs has allocated the sum of
R2,2m for the construction and operation of a National
Fluidized Bed Combustion Boiler (NFBC Boiller). Its
prime objective would be to demonstrate the reliability
of this process, over long periods of operation,
burning both discard and duff coal.



The combustion of inferler coals 1s mnot without
problems particularly since these coals are associated
with high ash, high sulphur and high percentage of
fines. The reduction of pollutants eminating from a
fluidized bed, when burning inferior coals, becomes
therefore a serious problem.

In this paper, fluidized bed combustion systems in
general, and the NFBC Boiler in particular, are
discussed within the context of pollution.

2 THE CHOICE OF FBC TO BURN INFERIOR COALS

Probably the most Iimportant feature of and FBC is that
it can handle all grades and sizes of coal, provided
that the combustion process is autogenous. In brief,
the reasons which favour fluidized bed combustion
technology for the combustion of inferior coals are
given below:

1) Conventional boilers cannot burn coal efficient=
ly 1f it contains a high ash fraction or has a
high concentration of fines. The reason for this
.is that, the combination of high ash (in excess
of 35%) and low volatiles cannot sustain
combustion, On the other hand, commercial FBCs
currently operate on coals with up to 70 per cent
ash content (1,2

(11) FBCs offer a higher boiler efficiency, 1if compa=
rison 1s made with conventional boilers. FBC
companies guarantee efficlencies of between 80
and 83 per cent. The reasons for this are,
better reaction kinetics and bed heat transfer
rates, which are attributed to the good solids
mixing, and the coantinuous ash removal from the
burning c¢oal particles. For the same reason,
FBCs with inbed tubes require a smaller heat
transfer surface area if compared with conven=
tional boilers of the same steam output,

(iii) FBCs operate at temperature of 800 to 950°C which
are below ash fusion temperatures. Further, the
problem of deposition of alkalli metals on the
tubes encountered in conventional boilers does
not occur in FBCs.

(iv) The low FBC combustion temperature results in low
nitrogen oxides (NOy) emissions as discussed in
the following section. Dolomite or limestone can
be added to the fluidized bed together with the
coal to remove sulphur oxides (50x). This method
eliminates the use of flue gas scrubbers. With
regard to emission of particulates, the FBC
offers no advantage over conventional combustion
systems.

A closer look at the pollution aspects of FBCs is given
in the following section.

3 FLUIDIZED BED COMBUSTION AND POLLUTION

In an FBC, coal is burnt in a bed of suspended inert
particles, These particles, generally ash or sand,
size less than 3 mm, are kept in suspension (fluidized)
by the upflow of air which also supplies oxygen for the
combustion of coal. The mean density of the fluidized
bed is similar to the density of the coal particles,
hence the good mixing of coal in the bed. To burn coal
in an FBC an internal heater 1s used which brings the
combustor up to temperature, approximately 650°C
(depending on the type of coal), When burning low ash
c¢oal, the ash is removed by attrition within the bed
and elutriation., However, when burning cocal with ash
in excess of 40 per cent, the ash which remains in the
combustor 1s removed by using a bed overflow facility.
In this way, there is no ash accumulation within the
combustor and the FBC maintains its fluidizatiom
characteristics.

Most of the research work on pollution aspects of FBCs
is concentrated on the emission of particulates,
nitrogen oxides (NOy) and sulphur oxides (SOy).
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(1) Emission of Particulate Matter

FBCs in general, produce higher concentrations of
particulates 1f compared with most conventional
combustion systems. This 1s characteristic of
this type of operation and is due to the scouring
effect and attrition within the fluidized bed
which produces fine coal particles and ash.

The problem of coal/ash elutriation from the
combustor becomes serious 1if Inferior coals are
burnt. Investigations into the elutriation of
coal/ash particles from combustors have shown, as
can be expected (3,4,5)  that the weight of
carbon/ash losses increase with the fluidizing
veloeity, the coal loading and with the reduc=
tion 1in coal feed size, Measurements of elu=
triated particles carried out at the combustor
exit pave, for atmospheric FBCs, concentrations
in the region of 2 00Oppm. Emission from
?ressurized FBCs are of the order of 10 000ppm
6),  These figures are high and they indicate
that flue gas clean-up equipment are necessary
for the operation of FBCs. Cyclones, baghouses
and electrostatic precipitators can reduce stack
emissions to internationally specified Ilevels,
Partial or total recycling of particulates leav=
ing the combustion chamber 1s widely employed.
This increases combustion efficiency to over 99
per cent and reduces the amount of carbon in the
ash product.

(i1) Emission of Sulphur Oxides

The removal of SOy (in gemeral 99% S50;, 1% S03)
is affected by design and operating parameters
such as, the fluidized bed operating conditions,
bed height and Ca/s molar ratio. The Ca/s ratio
is very important due to its economic implica=
tions. Both limestone and dolomite are used for
sulphur retention. There 1is, however, a prefe=
rence for dolomite for pressurized FBCs and
limestone for atmospheric FBCs (Figure 1). The
effect of temperature on sulphur capture is also
shown on Figure 1. Although, at temperatures
above 820 - 840°C there is a distinmct reduction
in the sorbent activity of atmospheric FBCs, this
does mot occur in pressurized systems.

(iii) Emission of Nitrogen Oxides

The nitrogen oxides in the flue gas of most com=
bustion systems are in the form of nitrogen
dioxide (NOp) and nitric oxide (NQ) which, at the
emission point, has a concentration of over 90
per cent. Nitric oxide 1s converted in the
atmosphere to mnitrogen dioxide which 1s the
reason why some regulations on NOyx emissions give
figures in terms of NOj equivalent weight. 1In an
FBC, almost all the nitrogen of NOy originates
from the coal, whereas in a Pulverized Fuel
Combustor more than half of the emitted NO,
originates from the unitrogen in the combustion
air. Typlcal ranges of NOy concentrations emina=
ting from coal fired power plants are given in
Table 1.

Although the excess air has no significant effect
on sulphur capture (9), NO; emissions increase
with percentage excess air (Figure 2). The same
applies for increases iIn combustion temperatures
(Figure 3). The improved reduction in NOy
emissions offered by pressurized combustion is
shown in Figure 4.

THE NFBC BOILER

This boiler was designed based om Tavistock duff but it
will also be capable of handling discards. Typical
chemical and physical properties of these two types of
coal are given in Table 2.

Table 3 gives a list of design parameters for the NFBC
Boiler.



To enable the efficient combustion of both discard and
duff coal and reduce pollution, special features have
been incorporated in the design of the boiler. These
features are described below:

(1) Both inbed and overbed coal feeders are provided
to investigate the effect of their position on
the elutriation of coal (Figure 5). It is be=
lieved that better combustion efficiencies will
be achieved if the duff coal is fed into the
fluidized bed.

(ii) The boiler utilizes a single pass convection bank

positioned in the wupper section of the furnace

(Figure 5). The rear wall tubes form a furnace

exit screen and a water-cooled collector where

particulate matter is dropped out of the flue gas
leaving the furnace and returned to the bed by
gravity. Further control and reinjection of par=
ticulates is accomplished through two stages of
cyclones. A portion of the ash is recycled back
te the boiler from the primary cyclones with the
remainder being removed by the secondary cyclone
and sent to the ash disposal bin. Although
cyclones may reduce particulate emission levels
to the specified 150ppm when burning good quality
coals, it is believed that for the combustion of
discard and duff this specification may not be
met, For this reason, an alternative route for
the flue gas passes through a baghouse instead of
the cyclones (Figure 6).

In addition to the facilities described above for
the removal of ash from the flue gas, a rock
removal system 1is also incorporated in the
fluidized bed. This is particularly essential
when burning discard coal.

(ii1) It is intended to use limestonme for inbed removal
of sulphur, The boiler is designed with a mini=
mum of 75% sulphur capture using up to 4 : 1 Ca/s
ratio based on stoichiometry,

Typical NOy and 50; emissions obtained during the ope=
ration of a similar FBC boiler are given in Figures 7
and 8., This boiler rated at 11 000 kg/h steam burning
anthracite culm (approximately 70% ash) was designed
and built by a consortium of companies with funds from
the Department of Energy (USA). The company that
managed this project is the technology supplier for the
NFBC Boiler.

Work on conmstruction of the NFBC Boiler plant at the
NICR Pilot Plant area in Pretoria West has already
begun and commissioning trials are scheduled for March,
1984. Handover date is May, 1984. 1In addition to con=
tinuous operation rums of the boiler burning duff and
discards, other types of coal will also be combusted to
gain expertise and report oo the combustibility of a
wide spectrum of South African coals,
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TABLE 1

TYPICAL NO , CONCENTRATION RANGES
IN FLUE GAs(7,8)

TYPICAL NO,

TRER. R FIRNG CONCENTRATION ppm

Pulverized Coal Fired : 500 - 700
Spreader Stoker : 400 - 470
FBC
Atmospheric : 200 - 700
Pressurized 100 - 200
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FIGURE 1:-EFFECT OF Ca/S MOL RATIO &
TEMPERATURE ON SULPHUR RETENTION




TABLE 2 DATA ON DUFF_AND DISCARD COAL TABLE 3  NFBC BOILER DESIGN PARAMETERS

NO  Concentration {ppm)

SIZE ANALYSIS
ANALYSIS OF RAW COAL (AIR DRY BASIS)
PERCENTAGE LARGER THAN SIZE Steam Flow (Natural Circulation) 12 000 kg/h
Steam Conditions:
COMPONENT  DUFF COAL DISCARD COAL  SIZE mm DUFF COAL DISCARD COAL Preasars 1,50, Mpa
Temperature 255 ‘c
Superheat 50 c
Water 2,9 . 1,6 31,2 0 2
Ash 17,8 62,7 25,4 29,2 Bed Dimensions (square) 93 m
Volatiles 26,4 16,1 19,1 47,9 Bed Height 0,68 - 1,5m
Fixed Carbon 52,90 19,6 12,7 0 61,5
Sulphur 1,4 ‘3,2 6,3 18,1 79,2 Fluidizing Velocity:
9.9 47,0 87,1 Duff Coal 1,7 m/s (max)
Calorific Value: ' 1,6 68,9 92,64 Discard Coal 2,0 m/s (max)
Duff Coal : 25,7 MI/kg -1,6 31,1 7,6
Discard Coal : 9,3 MI/kg Sulphur Capture 75% (min)
Turndown 4 to 1
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Sulphur retention (%]
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