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Research article 
Assessing anthropogenic contribution to PM2.5 from 
an urban residential area of Lagos, Nigeria using 
aliphatic hydrocarbon compounds as indicators

Introduction 
Atmospheric particulate matter (PM) with an aerodynamic 
diameter of 2.5 μm or less (PM2.5) is considered a major 
contributor to severe air pollution and has significant impacts 
on human health, atmospheric visibility and climate (Russell 
and Brunekreef, 2009; Javed et al., 2019; Tian et al., 2020; Sun 
et al., 2021). The composition of PM2.5 is very complicated and 
includes organic carbon (OC) and elemental carbon (EC), often 
referred to as carbonaceous components, trace metals, inorganic 
salts and some specific organic compounds such as aliphatic 
hydrocarbons including n-alkanes, steranes and hopanes, 
n-alkanoic acids and polycyclic aromatic hydrocarbons (PAHs) 
(Mandalakis et al., 2002; Javed et al., 2019; Sun et al., 2021). 
However, the most prevalent and significant class of organic 
compounds in the atmosphere are the aliphatic hydrocarbons 
(Fu et al., 2008; Ren et al., 2016; Boreddy et al., 2018). Due to 
their specificity, hydrophobicity, and prolonged persistence in 
the environment, these aliphatic hydrocarbon compounds have 

been used as organic molecular markers for pollution source 
identification (Simoneit et al., 1991; Mudge and Duce, 2005; 
Andreou et al., 2007; Javed et al., 2019; Sun et al., 2021). For 
example, n-alkanes primarily come from both anthropogenic 
and biological sources, such as petroleum residue, diesel engine 
exhaust (Simoneit,1984), and biomass burning (Simoneit and 
Elias, 2000, 2001), and also from terrestrial plant wax, fungi, 
bacteria, algae, and plankton (Brown et al., 2002). Additionally, 
plant wax n-alkanes are employed directly as a proxy for both 
the atmospheric transport and genesis of organic aerosol (OA) in 
the atmosphere (Tang et al., 2006; Lyu et al., 2017). Hopanes and 
steranes are ubiquitous in crude petroleum and are enhanced in 
the lubricating oils used in diesel and gasoline-powered motor 
vehicles, and their existence in the environment confirms the 
contribution of the burning of fossil fuels in the area (Simoneit 
et al., 2004; Rushdi et al. 2017; Javed et al., 2019). EC is mainly 
emitted from anthropogenic combustion sources, whereas 
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OC, as a complex mixture of many groups of compounds, has 
both primary and secondary origins. Primary organic carbon 
(POC) is generated during the combustion process, while 
secondary organic carbon (SOC) is produced in the atmosphere 
through the gas to particle conversion processes of volatile 
precursors. Exposure to high levels of these urban carbonaceous 
components has been linked with cardiovascular mortality and 
morbidity (Samara et al., 2013).

At present, improving the ambient air quality is one of Lagos's 
greatest environmental challenges.  Studies relating to the 
PM2.5 pollution status in Lagos have been reported by various 
authors (Ezeh et al., 2012; Obioh et al., 2013; Owoade et al., 2013; 
Ezeh et al., 2014; Alani et al., 2019; Zeng et al., 2019). However, 
reports have focused on the mass concentrations and elemental 
characterisation of PM2.5, while information on specific organic 
compound classes such as aliphatic hydrocarbons in PM2.5 that 
can be utilised as source markers in identifying the primary 
sources of organic aerosols (OA) are very scarce. For instance, Ezeh 
et al. (2012) and (2014) determined PM2.5 mass concentrations at 
different locations in Lagos during the rainy season. Although 
their results showed that PM2.5 mass concentrations were 
below the World Health Organization (WHO) limit of 25 µg 
m-3, they argued on the basis of correlation and enrichment 
factor analyses that most trace elements in PM2.5 originated 
from anthropogenic sources. Similarly, Owoade et al. (2013) 
determined the PM2.5 mass concentrations from different classes 
of receptor sites in Lagos. They showed that some residential 
areas have higher PM2.5 levels due to contributions from local 
sources and transport of pollutants from neighbouring sites 
more than industrial areas. Common anthropogenic sources 
for PM2.5 in their study include traffic-related, traffic emissions, 
marine salt, and industrial emissions based on the principal 
component factor analysis (PCFA) of the detected elements. 
More recently, Zhen et al. (2019) reported the chemical 
characteristics of PM2.5 based on PM2.5 mass concentrations, OC, 
EC, water-soluble ions and elemental compositions. According 
to their results, PM2.5 pollution was higher in Lagos than in Hong 
Kong. They also found that vehicular emissions contributed the 
most to PM2.5 pollution. 

Aliphatic hydrocarbon compounds have been used in other 
parts of the world to identify the main sources of PM2.5 pollution 
and to understand the important impact of regional transport 
on the characterisation of PM2.5 (Andreou et al., 2007; Javed et 
al., 2019; Sun et al., 2021). For instance, Andreou et al. (2007) 
investigated the organic chemical composition of PM2.5 in 
Athens to determine the emission sources. They found that all 
samples in Athens contained n-alkanes, biomarkers for fossil 
fuels, and a mixed origin (petrogenic and biogenic) of Athenian 
PM2.5. Vehicular emissions were the main source of aliphatic 
hydrocarbon compounds, with biogenic sources contributing 
less. Recently, Sun et al. (2021) determined the sources of PM2.5-
associated PAHs and n-alkanes in Changzhou, China. Their 
results showed that biogenic sources are the main source of 
n-alkanes and PAHs in PM2.5. The authors also observed that 
variations in the concentration of n-alkanes and PAHs from 

different air mass transports were not consistent with the 
changes in PM2.5 mass, and concluded that regional transport 
has important effects on the characterisation of PM2.5. This study 
therefore aimed at determining the PM2.5 mass concentration 
and characterising the chemical composition of PM2.5 collected 
at a residential location in Agege area of Lagos, Nigeria. The 
chemical analysis included the elemental carbon (EC), organic 
carbon (OC), aliphatic hydrocarbon compounds comprising 
of n-alkanes, hopanes and steranes. The impact of local and 
regional air mass transports on the amount of PM2.5, elemental 
carbon (EC), organic carbon (OC), and aliphatic hydrocarbon 
compounds arriving at the study site was also assessed using 
the air mass trajectory analysis. In addition, the sources of PM2.5 
pollution were identified based on the molecular diagnostic 
indices of n-alkanes, hopanes and steranes profiles. It is 
expected that this work will provide useful information on the 
characteristic nature of PM2.5 and in particular the sources and 
profiles of aliphatic hydrocarbons in PM2.5 in residential areas of 
Lagos, which is currently scarce. 

Materials and methods
Description of sampling site
The sampling site was an urban residential area located at 
3/5 Morenike Carena Close, Orile Agege, Lagos (6.635008N 
and 3.302543E). The site was located within the city, and thus 
the anthropogenic emissions from various sources was quite 
high. Lagos is the former administrative capital of Nigeria, 
and the biggest metropolis in West Africa with a population 
of over 21 million (Alani et al., 2019). It remains the economic 
and industrial hub of the nation, where a range of activities are 
taking place that might be detrimental to the city’s air quality. 
Lagos is susceptible to particulate matter pollution arising from 
vehicular traffic, diesel and gasoline generator emissions, open 
dumpsites, illegal waste burning, infrastructure construction, 
and household cooking using polluting fuel and stoves (Ibitayo 
2012; Oseni 2016; Adegboye 2018; Adam 2018; Ozoh et al., 2018). 

Sample collection
Thirty-six (36) PM2.5 samples (24-h samples) and blank samples 
(4) were taken between June and July 2021 during the peak 
of the rainy season to provide an overview of the extent of the 
impact of the rainy season on the PM2.5 mass concentrations 
and aliphatic hydrocarbon compounds characteristics in PM2.5. 
Samples were collected on high-purity quartz fibre filters 
(Φ = 47 mm) using a low-vol "Gent" stacked PM2.5 air sampler 
(Maenhaut et al., 1994). The device was placed at a height of 4.65 
m above the ground to minimise blockage of air parcels from 
surrounding buildings and was operated at a constant flow rate 
of 18 L/min. The samples were stored in a refrigerator at 5°C 
and subsequently cooled in a container packed with frozen ice 
packs and transported to TROPOS in Leipzig, Germany within 24 
h. Upon arrival, the samples were stored in the freezer at -20 °C 
prior to laboratory analysis. 
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Gravimetric and organic/elemental 
carbon (OC/EC) analysis
The mass of the PM2.5 samples were quantified using a 
microbalance (Mod. AT261 Delta Range, Mettler-Toledo) after 
being allowed to equilibrate in the weighing room for 72 h 
under a climate-controlled conditions (temperature: 20 ± 1 °C 
and relative humidity: 50 ± 5%) before and after sampling. To 
determine the mass concentration, the weight difference of the 
filters before and after sampling was computed and divided 
by total sampling volume. Organic carbon and elemental 
carbon were analysed using a thermo-optical method (Sunset 
Laboratory Inc., USA) at a maximum temperature of 850 °C using 
the normalised temperature programme EUSAAR2 (EUropean 
Supersites for Atmospheric Aerosol Research) as described in 
the literature (Cavalli et al., 2010; Yttri et al., 2019). The method 
is in accordance with the standard proposed by the European 
networks (ACTRIS, EMEP). Samples were thermally desorbed 
from the filter medium under an inert He atmosphere followed 
by an oxidising O2-He atmosphere, under carefully controlled 
heating ramps. A flame ionisation detector was used to quantify 
methane after catalytic methanation of CO2. With the EUSAAR2 
protocol, different OC fractions in an inert atmosphere (He) 
were measured at 200°C for 120s, at 300°C for 150s, at 450°C for 
180s and at 650°C for 180s. Subsequently, the EC fractions were 
measured in an oxidising atmosphere (O2-He) at 500°C for 120s, 
at 550°C for 120s, at 700°C for 70s and at 850°C for 80s (Cavalli et 
al., 2010). Lower OC/EC ratios are usually the result of charring 
processes' tendency to overestimate the EC and underestimate 
the OC. In order to adjust for the charring process, an optical 
correction was used. A laser with a wavelength of 678 nm was 
used to measure the sample's transmission in order to calculate 
the optical correction for charring for pyrolytic carbon. For OC 
and EC measurements, the detection threshold was 0.2 µg cm-2. 

Turpin and Lim (2001) evaluated organic matter (OM) using the 
conversion factor ƒOM/OC. The organic matter was around twice 
as much as the organic carbon (OM = 2.1 × OC). Because the 
conversion factor varies depending on the specific conditions 
at each site, the factor ƒOM/OC = 2.1 is recommended as it also 
takes the age of the aerosol into account (Turpin and Lim, 2001). 
Thus, the OM in the present study was estimated accordingly. 
The POC content can be estimated using EC as a tracer by 
multiplying the minimum OC/EC ratio determined for the entire 
study period by the EC content as follows (Huang et al., 2012; 
Deabji et al., 2021): 

POC = (OC/EC)min × EC  (1)

Consequently, the amount of SOC that contributes to total 
organic carbon can be determined as the difference between the 
concentrations of primary and secondary organic carbon using 
the following equation (Huang et al., 2012; Deabji et al., 2021):

SOC = OC - POC  (2)

Organic compounds analysis 
The analysis of aliphatic hydrocarbon compounds such as 
n-alkanes (C20-C34), hopanes, and steranes were carried out 

using a Curie-point pyrolyser (JPS-350, JAI Inc., Japan) coupled 
to a gas chromatography-mass spectrometry system (6890 N 
GC, 5973 inert MSD, Agilent Technologies, CA, USA). A detailed 
description of the analytical procedures has been previously 
documented (Neusüss et al. 2000). Briefly, filter aliquots 
were spiked with a solution of internal standards, including 
perdeuterated tetracosane-d50 (C24-D50) and dotriacontane-d66 
(C32-D66). Two circular filter punches (6 mm; 56.5 mm2) from each 
sample were then coated with an alloy of iron and nickel (50% 
Fe; 50% Ni) and immediately evaporated in a pyrolysis chamber 
at 510 °C for 4 s in a helium environment. The compounds were 
separated using a capillary column coated with a stationary 
phase of 5 % phenyl-arylene and 95 % dimethylpolysiloxane 
(ZB-5MS, 30 m × 0.25 mm i.d. × 0.25 μm film thickness). The GC 
and MS conditions had been previously described by Khedidji et 
al. (2020). Individual compounds were identified by comparing 
the mass spectra with literature and library data and validated 
with standard compounds. Internal calibration was performed 
using the respective internal standards.  The GC-MS data were 
acquired using dedicated software (ChemStation) from Agilent. 
For each compound analysed, the sample concentration was 
calculated by subtracting the average concentration of the blank 
filter from the measured concentration in the sample.

Molecular diagnostic ratios 
To investigate the origin of the n-alkanes in the PM2.5 samples, 
the following diagnostic ratios were used.

The carbon preference index (CPI): CPI is a diagnostic technique 
that depicts the relationship of proportionality between alkanes 
with odd and even carbon chains in a given sample. Based on 
several studies (Bray and Evans, 1961; Simoneit et al.,1991; 
Boreddy et al., 2018), the CPI for n-alkanes (odd to even ratio) in 
the PM2.5 was calculated as follows:

 (3)

 
The average chain length (ACL): ACL is based on the prevalence 
of odd high homologs. It is estimated as the mean number of 
carbon atoms per molecule (Caumo et al., 2020). ACL has been 
used to identify the origins of n-alkanes in a given sample 
(Kawamura et al., 2003; Boreddy et al., 2018; Caumo et al., 2020), 
and based on these studies, the ACL for n-alkanes in PM2.5 was 
obtained according to the following equation: 

 (4)

 
Odd-even predominance (OEP): The odd-even computation 
also known as the odd-even carbon number by dividing the 
concentration of odd-numbered n-alkanes by the concentration 
of even-numbered n-alkanes as follows:

 (5)
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Air mass back trajectory 
96-hour air mass back trajectories for each sample collection 
time interval were determined using the HYSPLIT model version 
5 (www.ready.noaa.gov/HYSPLIT_traj.php, last use February 
2023, Stein et al., 2015) to evaluate the origin of the PM2.5 during 
the sampling period.  The choice of using 96-h was to provide a 
representation for fine mode particles (PM2.5) that have longer 
atmospheric lifetimes as coarse mode particles. The Global Data 
Assimilation System meteorological data set was used for the 
HYSPLIT trajectory calculations with a 1°-degree grid size. The 
obtained trajectories were further processed using the r studio 
software open-air package (https://davidcarslaw.github.io/
openair) for graphical presentation. The computed trajectories 
also contained information of the air mass history, its residence 
time (average time the air parcel stays over a given grid cell or 
geographical landscape during its transport prior to arrival at 
the receptor site) over given geographical landscapes, different 
mixing depts (height at which the potential temperature of the 
air mass starts to change), radiation and general meteorology 
information that the air mass experienced during its transport. 
Using the trajCluster function of the open-air r package, 
a cluster analysis of the total determined trajectories was 
performed. Here, the trajectories were grouped according to the 
least Euclidian distance between the trajectory’s points. After 
several iterations amongst pairs of trajectories, the average 
trajectory representative of the minimum distance between 
the trajectories with a low total spatial variance (TSV) was 
determined and assigned as a cluster. The equation applied to 
determine the Euclidian distance (d (1,2)) between two points 
of two trajectories 1 and 2 at positions (X1, Y1) and (X2, Y2) 
respectively, is given as (Stein et al., 2015):

 (6)

 
The selection of the final number of clusters involves a 
mathematical process wherein the total spatial variance is 
compared with the model estimated number of clusters. The 
level at which a change in the number of clusters significantly 
increases the TSV is considered as the point of the optimum 
number of clusters for the total evaluated back trajectories. 
In this study, 5-cluster solution provided a reasonable spatial 
representation of the entire computed trajectories and was 
considered the best solution of this analysis. The clusters 
were labelled C1 to C5 and were assigned to each sample. The 
samples chemical composition including their PM2.5 mass was 
averaged according to their respective clusters and the relative 
contributions of the clusters to the chemical components were 
evaluated.

Results and discussion
PM2.5 mass concentration and its 
carbonaceous components
Table 1 summarises the 24-h average PM2.5 mass concentrations 
and its carbonaceous chemical components for the sampling 

period (June to July 2021). The 24-h PM2.5 mass concentrations 
ranged from 8.7 to 56.5 µg m-3 (avg. 27 ± 11.1 µg m-3), surpassing 
the daily threshold of 15 µg m-3 recommended by World Health 
Organisation (WHO, 2021). The OC concentration ranged from 
1.0 to 4.9 µg m-3 (avg. 2.2 ± 1.0 µg m-3). On average, OC accounted 
for 8% of the total PM2.5 mass and contributed 73% of the 
carbonaceous aerosol while the majority of OC consisted of POC 
(68%), indicating that the OC was a crucial component of PM2.5 
and the primary emission sources of OC in the study area need 
to be controlled. The EC concentration ranged from 0.4 to 1.8 µg 
m-3 (avg. 0.8 ± 0.3 µg m-3). On average, EC constituted about 3% 
of the total PM2.5 mass. Though this value could be viewed as 
only a small portion of ambient PM2.5, EC has been recognised 
as a crucial sign of unfavourable health impacts (Janssen et al., 
2011). With a correlation value of r2 = 0.81 (Fig. 1a), OC and EC 
demonstrate a strong relationship, indicating that the majority 
of the OC at the site was produced as a primary aerosol with 
EC. This revealed that EC and OC, as well as the precursor that 
resulted in SOC formation, could have an identical source. The 
positive bi-modal correlation (r2 = 0.76 and 0.40) between SOC 
and EC indicated that the primary combustion sources have an 
influence on the generation of SOC (Fig. 1b), and also suggested 
two distinct associations such as sources or atmospheric 
processes linking the two different carbonaceous components. 
The OC/EC ratios ranged from 2 to 5.1 µg m-3 (avg. 2.9 ± 0.7 µg 
m3). Hildemann et al. (1991), reported 2.2 µg m-3 for light-duty 
gasoline vehicles while Cao et al. (2005) observed 4.1 µg m-3 
for vehicle exhaust. This suggested that the most probable 
common source of PM2.5 emission in the area was gasoline-
powered engines. Generally, OC/EC ratio > 2 is an indicator of 
SOC formation in the atmosphere (Javed et al., 2019).

n-alkanes in PM2.5
The concentrations of aliphatic hydrocarbons detected in 
the PM2.5 samples from the residential area in Lagos and the 
molecular diagnostic indices are presented in Table 2. The 
aliphatic fraction of the PM2.5 was dominated by n-alkanes 
from C20 to C34, and maximizing at C25, followed by C26 and C20, 
respectively (Fig. 2). The total concentrations of the n-alkanes 
∑(C20-C34) in the samples ranged from 1.8 to 146.6 ng m-3 (avg. 
43.6 ± 35.1 ng m-3) (Table 2). On average, n-alkane contributed 
0.2% and 1.0% of the total PM2.5 mass and OM budget, 

Table 1: Summary of 24-h average PM2.5, and carbonaceous constituents 
(µg m3) in Lagos, Nigeria

Minimum Maximum Average Standard 
deviation

PM2.5 mass 8.7 56.5 27.0 11.1

EC 0.4 1.8 0.8 0.3

OC  1.0 4.9 2.2 1.0

OC/EC 2.0 5.1 2.9 0.7

POC 0.8 3.7 1.5 0.7

SOC 0.0 1.7 0.6 0.5

OM 2.2 10.3 4.5 2.1
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respectively, indicating a sizeable portion of the ambient PM2.5 
and organic matter concentration in the area. A comparable 
range of total n-alkanes concentrations in PM2.5 were recently 
found in densely populated and traffic-intensive city of Beijing, 
China (4.51-153 ng m-3) (Yang et al., 2023), but higher than the 
average total concentrations recorded in PM2.5 in a residential/
commercial area in Doha, Qatar (8.04 ± 7.74 ng m-3) (Javed 
et al., 2019), an urban residential area (Aglantizia) in Nicosia, 
Cyprus (13 ± 12 ng m-3) (Iakovides et al., 2021), and roadsides 
in Lisbon, Portugal (22.4 ± 17.9 ng m-3 in winter and 23.3 ± 2.83 
ng m-3 in summer) (Alves et al., 2016). In contrast, the average 
total concentration of n-alkanes obtained in this work was lower 
than some urban cities in China (Changzhou: 252.37 ± 184.02 
ng m-3; Nanjing: 205 ng m-3; Changchun: 209 ng m-3; Shanghai: 
259 ng m-3 in PM2.5) (Wang et al., 2006; Haque et al., 2019; Sun 

et al., 2021) and Hong Kong (195 ng m-3) (Wang et al., 2006). 
The prevalence of low carbon number (C20-C26) in the aerosol 
particles showed a predominance of anthropogenic sources, 
such as incomplete combustion of fossil fuels (Zhang et al., 
2018). Fossil fuel-derived n-alkanes with the dominant of C25 
and C20 homologs are considered to be from gasoline engines 
while C20-dominated n-alkanes are regarded as from heavy and 
medium-duty diesel engines (Rogge et al., 1993; Schauer et al., 
1999). The preponderance of C25 and C20 in the samples (Fig. 2) 
showed that anthropogenic emissions resulting from gasoline 
and diesel engines were probably the dominant sources of 
n-alkanes in the area under study. 

The carbon preference index (CPI) values calculated from 
n-alkane distribution have been extensively employed as 

Figure 1: (a, left) Plot of OC versus EC, and (b, right) EC versus SOC showing the relationship between the parameters. Samples with the same colour 
indicate a similar association (source or atmospheric processes).

Table 2: Aliphatic hydrocarbon concentrations (ng m-3) and molecular indices of n-alkanes in PM2.5 from a residential area in Lagos, Nigeria 

Compound Minimum Maximum Average Standard deviation

∑n-alkanes (C20-C34) 1.8 146.6 43.6 35.1

Indices

CPI 0.0 2.3 0.7 0.5

ACL 25.0 30.8 25.7 1.6

OEP 0.0 1.9 0.5 0.5

Hopanes

17α(H), 21β(H)-30-Norhopane 0.0 22.1 4.4 7.0

17α(H), 21β(H)-Hopane 0.0 31.7 5.6 8.9

17α(H), 21β(H)-22S-Homohopane 0.0 89.9 2.9 15.1

17α (H), 21β(H)-22R-Homohopane 0.0 14.1 1.9 3.7

∑4Hopanes 0.0 89.9 18.7 25.9

Steranes

α, α, α 20R-Cholestane 0.0 3.1 0.3 0.8

α, β, β (20R 24S)-24-Ethylcholestane 0.0 15.1 1.7 3.9

α, α, α (20R 24S)-24-Ethylcholestane 0.0 7.9 1.3 2.1

∑3Steranes 0.0 26.0 3.3 6.7
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a source marker in aerosol samples (Simoneit et al., 1991; 
Andreous et al., 2008; Alves, 2008; Alves et al., 2016; Boreddy 
et al., 2018; Sun et al., 2021).  The CPI values obtained from 
n-alkane distribution ranged from 0.0 to 2.3 (avg. 0.7 ± 0.5) 
(Table 2). CPI values close to 1 were attributed to pollution 
from petrogenic sources, while values above 3 were attributed 
to biogenic sources (Omar et al., 2007; Alves, 2008). Based on 
the average CPI value determined in this work, the n-alkanes 
in PM2.5 originated mainly from a petrogenic source. The ACL 
has also been effectively used to pinpoint aerosol pollution 
sources (Boreddy et al., 2018; Caumo et al., 2020). The ACL 
index for n-alkanes in the present PM2.5 samples ranged from 
25.0 to 30.8 (avg. 25.7 ± 1.6) (Table 2); the wide variation in the 
index suggested that the primary source of n-alkanes in PM2.5 
stemmed from petrogenic contamination (Jeng, 2006). The 
OEP is an efficient tool that can give details about the various 
n-alkane sources (Ladji et al., 2009). The OEP results computed 
from the n-alkanes in the PM2.5 samples ranged from 0.0 to 1.9 
(avg. 0.5 ± 0.5) (Table 2). In general, OEP values of less than 1.3 
are attributed to contamination by crude oil (Scalan and Smith, 
1970). The low average OEP value suggested aerosol pollution 
arising from petroleum sources (Scalan and Smith, 1970; Sojinu 
et al., 2012). 

Hopanes and steranes in PM2.5
The concentrations of hopanes and steranes detected in 
the PM2.5 samples during the entire campaign period are 
listed in Table 2. Four (4) hopanes including 17α(H),21β(H)-
30-norhopane, 17α(H),21β(H)-hopane, 17α(H),21β(H)-22S-
homohopane, and 17α(H),21β(H)-22R-homohopane and 
three (3) steranes including α, α, α 20R-Cholestane, α, β, 
β (20R 24S)-24-Ethylcholestane and α, α, α (20R 24S)-24-
Ethylcholestane, were detected in the PM2.5 samples (Table 2). 
The total concentrations of hopanes (∑4 hopanes) and steranes 
(∑3 steranes) varied from 0.0 to 89.9 ng m-3 (avg. 18.7 ± 25.9 ng 
m-3) and 0.0 to 26.0 ng m-3 (avg. 3.3 ± 6.7 ng m-3), respectively, 
in PM2.5. On average, hopanes accounted for 0.1% and 0.4% of 
the total PM2.5 and OM, while steranes contributed 0.01% and 
0.1% of the total PM2.5 and OM, respectively, making them a non-
negligible part of the organic matter content in the study area. 
The average total hopanes and steranes concentrations in this 
study were higher than those reported in PM2.5 in a residential/
commercial area in Doha, Qatar (0.521 ± 0.677 ng m-3) and (0.162 
± 0.25 ng m-3), respectively (Javed et al., 2019). Similarly, lower 

average hopanes and steranes concentrations were observed 
in an urban residential area in Nicosia, Cyprus (0.83 ± 1.04 ng 
m-3) and (0.27 ± 0.39 ng m-3), respectively. The average hopanes 
level in this study was likewise higher than those observed in 
roadsides areas in Lisbon, Portugal in winter (1.71 ± 1.55 ng 
m-3), but comparable to those observed in roadside areas in 
Lisbon, Portugal in summer (3.23 ± 1.15 ng m-3) (Alves et al., 
2016). The presence of hopanes and steranes in PM2.5 samples 
suggested fossil fuels combustion in the area (Simoneit et al., 
2004; Javed et al., 2019). The steranes were dominated by α, β, 
β (20R 24S)-24-Ethylcholestane (Table 2). The stereochemical 
configurations at the C17 and C21 positions of hopanes are 
frequently used to assess the thermal maturity levels of fossil 
fuels, and have proved useful in evaluating the source of 
hopanes in aerosol studies (Simoneit et al., 2004; Barakat, 2002; 
Mikuška, Křůmal, and Večeřa 2015; Javed et al., 2019). Hopanes 
with configurations of 17β(H), 21β(H) are considered immature; 
17β(H), 21α(H) are of low maturity while 17α(H), 21β(H) are fully 
mature (Mikuška, Křůmal, and Večeřa 2015; Javed et al., 2019). 
The main homologs of hopanes detected in the samples were the 
thermodynamically more stable 17α(H), 21β(H) configurations, 
with a preponderance of the 17α(H), 21β(H)-hopane compound 
(C30αβ; 36% of total hopanes). This was followed by 17α(H), 
21β(H)-norhopane (C29αβ; 28%) (Fig. 3), a fingerprint for vehicle 
emissions (Mikuška, Křůmal, and Večeřa 2015; Javed et al., 2019). 
The dominance of αβ configuration indicated that atmospheric 
contamination in the study area emanated from matured 
petroleum. Again, the higher concentration of the 22S hopane 
relative to the corresponding 22R epimer (Table 2; Fig. 3), further 
supported the fact that the hopanes were primarily derived from 
gasoline and diesel engine exhaust (Rushdi et al. 2017; Javed et 
al., 2019). The enhanced levels of these petroleum biomarkers 
(Barakat, 2002; Mikuška, Křůmal, and Večeřa 2015; Javed et 
al., 2019), indicated a significant impact of petrogenic source 
emission in the study area. 
 

Figure 2: Average concentrations of n-alkanes in the PM2.5 samples.

Figure 3: The percentage composition of hopanes in the PM2.5.
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Two strong positive correlations (r2 = 0.96 and 0.90) were 
observed between hopanes and steranes (Fig. 4a), indicating two 
separate associations such as sources or atmospheric processes 
linking the two different types of compounds. Hopanes and EC 
have been used to allocate gasoline and diesel emissions (Yu et 
al., 2011). Diesel engines are strong contributors to both EC and 
hopanes, whereas gasoline engines are huge sources of hopanes 
but only contribute moderate amounts of EC. As a result, diesel-
powered engines have substantially lower hopanes to EC ratios 
than engines that run on gasoline (Yu et al., 2011). The ratio-
ratio plot of hopane (17α(H),21β(H)-hopane) and norhopane 
(17α(H),21β(H)-30-norhopane) obtained for PM2.5 in this study, 
normalised by EC is shown in Fig. 4b, modified from Yu et al. 
(2011). The plot corroborated the sources of hopanes as being 
from diesel and gasoline engines due to the strong correlation 
between the groups of compounds, which might have emanated 
from vehicle emissions, motorbikes, and fumes emitted by 
diesel and gasoline engines.

Air mass source regions 
As shown in Fig. 5, air masses originated from different regions of 
the Atlantic Ocean crossing through various densely populated 
areas in the coastal settlements in Lagos at different altitudes 
before arriving at the site. The clusters C1 and C2, represent 

44% and 25%, respectively, of the total air mass inflow during 
the sampling period and were characterised by their different 
origins, but with a similar profile in the mixing depth and 
trajectory heights (air masses altitudes) close to their arrival at 
the sampling site. C3 (13%) and C4 (15%) were representative 
of air masses that spent more time over the Atlantic Ocean and 
little time over terrain with C4 passing closer to the coast of 
neighbouring Benin republic while C3 was confined within the 
coast of Nigeria and originated from the Gulf of Guinea region. 
C5 made up only about 2% of the trajectories but represented air 
masses originating from the coastal area of Nigeria with higher 
residence time over land and vegetation regions with low mixing 
depth. These characteristics made it contributed significantly to 
the composition of the particles at the sampling site.
 
Influence of source regions on PM2.5 mass 
and carbonaceous components
Fig. 6 gives the quantified contributions of the different 
directions of air masses to the PM2.5 mass and its carbonaceous 
components. Interestingly, air mass for cluster 5 (C5) with few 
episodes of air transports contributed more to PM2.5 mass (22%), 
EC (21.4%), OC (24.7%), OC/EC (23%), POC (21.4%), SOC (32%), 
and OM (24.7%) (Fig. 6a), as compared to air masses for clusters 
1 to 4 (C1 to C4) which passed mainly through the Atlantic Ocean 
before crossing the mainland to the sampling site. Cluster 5 after 
emerging from the sea has a relatively long residence time in the 
continental coastal areas of the Atlantic Ocean before returning 
to the marine area and eventually crossing the mainland to the 
sampling site. The relatively low mixing depth of the air mass, 
high exposure to different continental environments and natural 
vegetation during transports may have raised the levels of the 
PM2.5 mass and its chemical components in the C5 trajectory 
(Fig. 6b). 

Influence of source regions on aliphatic 
hydrocarbon compounds  
The contributions of the different direction of air mass to aliphatic 
hydrocarbon compounds are shown in Fig. 6.  As previously 
observed in the carbonaceous materials and PM2.5 mass 

Figure 4: (a, left) Cross plot of hopanes versus steranes. Samples with the same colour indicate a similar association (source or atmospheric processes) 
between hopanes and steranes in Fig. 4a, and (b, right) Ratio-ratio plot of hopane and norhopane normalised by EC (Modified after Yu et al., 2011). 

Figure 5: 96-hours backward air mass trajectories arriving at the 
sampling site during the sampling period in the rainy season.
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in the area. Based on the air mass trajectories, the levels of 
PM2.5, carbonaceous materials, and aliphatic hydrocarbon 
compounds arriving at the study site have been considerably 
impacted by both local and regional air transports. This study 
could help decision-makers and environmental stakeholders to 
develop specific, focused, and efficient management strategies 
for mitigating local air pollution challenges in Lagos, Nigeria.
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