Commentary
Are nature-based solutions a missing link in air quality management in South African cities?

Bianca Wernecke*1,2 and John-Rob Pool3
1South African Medical Research Council, Environment and Health Research Unit, Johannesburg, South Africa
2Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
3Cities4Forests, World Resources Institute, 10 G Street NE, Washington, DC, 20002, USA
* Corresponding author: Bianca Wernecke, E-mail: bianca.wernecke@mrc.ac.za

Foreword
Air quality in urban centres is notoriously poor: almost 50% of cities which are home to 100 000 residents or more, and more than 97% of cities in low- and middle-income countries of that size, do not meet the recently updated WHO Global Air Quality Guidelines (WHO, 2021; Jennings et al., 2021). Estimates are that 61 out of every 100,000 deaths in urban areas worldwide – totalling 1.8 million excess deaths – were due to particulate matter exposure in 2019 alone (Southerland et al., 2022). In addition to traditional air pollution reduction and mitigation methods, nature-based solutions (NBS) are increasingly being trialled to reduce air pollution exposure in cities globally. Here we discuss the potential value and necessary considerations of NBS in improving the air we breathe, and we consider how this could be applicable to a uniquely South African context. Are NBS a missing link in air quality management in South Africa?

Introduction
Because urban centres are characterised by large and dense human populations, tackling air pollution and reducing exposure to health-damaging air pollutants is a public health priority (Jennings et al., 2021). However, due to its many sources (e.g., vehicle emissions, industry and manufacturing, waste burning and outdoor cooking, to name a few), as well as complex socio-economic factors and the presence of confounding urban microclimates, air pollution in cities remains difficult to manage, especially in developing countries (Menon et al., 2021).

In addition, cities are prone to the urban heat island effect, which presents another health threat for residents and can exacerbate the health burden placed on humans from exposure to air pollution (Menon et al., 2021).

With projections that 80% of the South African population will reside in urban areas by 2050 (Mlambo, 2018), and with ambient temperatures set to rise over the coming decades due to global climate change, it is critical that a combination of cost-effective and sustainable interventions are identified and implemented in South African cities to protect human health and biodiversity, and enhance the resilience of urban ecosystems (Liu et al., 2021).

Nature-based solutions for urban resilience
Solutions to protect, sustainably manage, and restore natural or modified ecosystems, which effectively and adaptively address societal challenges and simultaneously provide human well-being and biodiversity benefits are known as “nature-based solutions” (Cohan-Shacham et al., 2016). They include urban forests, green roofs/walls, green spaces and parks, stormwater and detention ponds, rain gardens and bioswales, and even restored ecosystems (Liu et al., 2021; World Bank, 2021).

Nature-based solutions can be used to enhance urban resilience in the face of a wide range of urban challenges (Liu et al., 2021). When used as “green infrastructure” to complement traditional built infrastructure in urban areas, NBS have been found to contribute to improved air quality, reduced ambient air temperatures, reduced flooding, and enhanced carbon sequestration (Anderson and Gough, 2020). Over and above this, NBS have been shown to improve human mental and physical health and well-being (Ascenso et al., 2021), and when designed and implemented in a participatory manner, can favourably benefit women, youth and low-income communities (Paganò et al., 2019; Bechauf, 2021). Nature-based solutions can also be used as effective biomonitoring tools to determine the presence, quantities, temporal or spatial changes and effects of pollutants on the environment (Calfapietra, 2020; Fusaro et al., 2021; Shagjjav et al., 2022). For example, a study by Molnár et al., (2020) which assessed the usefulness of an Air Pollution Tolerance Index for environmental health, particularly considering air quality, showed that quantifying the amount of deposited dust on the surface of urban tree leaves can be an effective method for monitoring urban air quality. Similarly, some plant species can act as useful bioindicators, by developing leaf injuries or changes in vegetative periods if exposed to high concentrations of specific pollutants (Fusaro et al., 2021).

A nuanced approach to NBS for air quality management
If chosen strategically, NBS can be highly effective in taking up or removing air pollutants from the ambient air, by reducing...
The use of nature-based solutions (NBS) to improve air quality and urban resilience is gaining prominence due to growing awareness of their potential benefits, cost-effectiveness, and environmental benefits. Despite this, additional empirical evidence is needed on their intended benefits, cost effectiveness, and maladaptation. Careful planning should inform the design of NBS to ensure that unforeseen negative consequences do not arise. For example, NBS can worsen air pollution if they are not designed to reduce or eliminate pollution sources, though they should not be discounted as cost-effective, complementary methods aimed at addressing air pollution, as shortcomings include oversimplification of design and underestimation of costs and maintenance requirements.

A study from multiple cities in South Africa illustrated the ability of the lichen species Parmelia caperata to accumulate Mercury (Hg) from the ambient air, which suggests the potential to use this lichen to monitor atmospheric Hg deposition across the landscape. Similarly, the lichen thallus of Parmelia sulcate has been used to assess the concentrations and possible sources of trace elements in the city of Tshwane, South Africa. Vegetation barriers, such as shrubs or dense tree canopies, can directly remove and reduce air pollution levels, but they can also present a physical barrier between humans and pollution sources (e.g., shrubs planted between roads and walkways in cities). This has been tested in a study in Khayelitsha, Cape Town, South Africa, where planting windbreak trees proved effective in reducing residents’ exposure to ambient PM10.

Despite evidence that promotes the use of NBS to improve air quality, research also shows that NBS are site- and context-specific, require a nuanced approach, and must be designed with specific benefits in mind. NBS should be considered in cities in South Africa to improve air quality, enhance ecosystem resilience and holistically improve human health and well-being.

Conclusions
Air pollution is one of the largest environmental health threats, causing millions of deaths annually. The far-reaching benefits of well-designed NBS should be considered in cities in South Africa to improve air quality, enhance ecosystem resilience and holistically improve human health and well-being.

If weighed properly, the co-benefits and trade-offs of NBS could solve a wide range of environmental, social and economic challenges. Even though maintenance of NBS can be lower than that of traditional infrastructure, for interventions to be successful in the long-term, funding for adequate maintenance must be set aside during the design phase. Other trade-offs need to be considered when using trees to improve air quality, including the impacts of air pollutants that can negatively impact the growth and survival of vegetation as well as the resilience of urban ecosystems.

Despite growing awareness of the potential of NBS, additional empirical evidence on their intended benefits, cost effectiveness, and resilience to climate change and reliability is needed. More research and collaboration between atmospheric, natural and social scientists, NBS practitioners, and policy makers are required to ensure that NBS can be used as effective air pollution reduction interventions at a city level.

In developing contexts, where overlapping exposure to environmental health risks is a reality, it must be understood that urban greening and NBS alone cannot compensate for the systemic inequalities that lead to disproportionate burdens from environmental health risks like air pollution. Reducing this burden requires a combination of technical and socio-economic interventions. This “Green Apartheid” illustrates the clear need to understand the complex links between green infrastructure and human health and well-being, especially in a South African context.

References

Shagjivov, O., Bayarmaa, J., & Otgonbayar, K. (2022). Air pollution tolerance indices of selected plants around Ulaanbaatar city,
Commentary: Are nature-based solutions a missing link in air quality management in South African cities?

Acknowledgements

We would like to thank Jessica Seddon, Global Lead, Air Quality, World Resources Institute Ross Centre for Sustainable Cities and Todd Gartner, Director, Cities4Forests, for their input into this commentary.